If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+11x=0
a = 16; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·16·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*16}=\frac{-22}{32} =-11/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*16}=\frac{0}{32} =0 $
| 0.50(16)+0.90x=0.65(16+x) | | 2(h-9)+3=5 | | 4n(2)=81 | | 5t+7=-3t-9 | | 13x7=-32 | | 5-4g=-7+2g | | 2(3a-1)=4(-2a+4) | | 2(r-3)-6=-2 | | 5.4g+9=2.4g+15 | | 7-4a=15 | | 3=2(f+10)-1 | | (2^x)^x=16 | | 2k(2)-37=61 | | 3.4x+3.7x=14.8 | | -16|+6^2=20y-|-38|-19y | | x-47=90 | | 16=-2(p-18) | | (8)(x/2)+x=18.8 | | 26+4/13(-15x-52)=1190 | | -10w-10=-3w-9w+10 | | 5(w^2-5)(w^2+2)=0 | | 142+5x=6x-2+8x | | (X-3)^2+y^2=9 | | 4-10p=3p-9 | | -5+w/4=-29 | | 21=-2k+9 | | -f+10=-10-4f+5f | | -38=-3+5y | | x²-6x-42=0 | | 3/8=b+7/20 | | 3(x4)=13-3x | | -5=12x+19-24x |